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Abstract Recent advances in computational capabilities often make engineering

simulations of lifetime tractable. We consider the case in which there

exist lifetime data from a computational model as well as data from a

physical reliability experiment. In addition, there may also exist one

or more expert opinions about the expected lifetime for selected factor

settings. We simultaneously analyze the combined data using a hierar-

chical Bayes model. In this integrated approach we recognize important
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di�erences, such as possible biases, in these experimental data and ex-

pert opinions.

We illustrate the methodology by means of an example. Hellstrand

(1989) designed and conducted an experiment to study the e�ect of three

categorical design parameters on ball bearing lifetime. In addition to

the lifetime data from a 23 full factorial experiment, we assume the

existence of computationally produced lifetimes for four of the eight

factor settings for the same three factors. We also assume there are

expert opinion data for seven of the eight factor settings. The integrated

data are used to estimate the reliability functions for the eight factor

settings. The results indicate that reliability is more precisely estimated

by using this integrated data approach.

Keywords: information integration, recursive Bayesian hierarchical model, reliabil-

ity function

1. Introduction

The purpose of a lifetime (or time-to-failure) reliability experiment is

to quantify the e�ect of one or more factors on the lifetime of some device

of interest. Recent advances in computational capabilities often make

engineering simulations of lifetime tractable. For example, degradation

models are commonly used in which the corresponding lifetime is the

random time before the degradation reaches some critical threshold (or

limiting) value. The primary reason for using computational models is

that they often o�er lower cost/time means to explore parameter e�ects

than physical experiments. However, physical experimentation is often

used as a means of validating computational results while at the same

time adding noise e�ects.

We assume here that there exists related computer experimental life-

time data on the same, or a subset of the same, physical experimental

factors. We can often maximize return on development costs through the

integrated analysis of such hybrid experimental design data. It is also

statistically eÆcient to �t a single, integrated model that statistically

expresses the e�ect that the factors of interest have on lifetime.

The situation we consider is quite general in that we do not require

that we have computed (or measured) lifetimes at the same factor val-

ues in both experiments. We only require that there exist some common

set of factors (either all or at least some) for both experiments. For

example, it is sometimes the case that a broad (or screening) computer

experiment is �rst performed, that is followed later by a physical relia-

bility experiment in a smaller region of particular interest of the overall

computer experiment design space.
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In addition, there may also exist one or more expert opinions regard-

ing reliability. Traditional statistical approaches consider each of these

sets of data separately with corresponding separate analyses and results.

A compelling argument can be made that better, more powerful statis-

tical results can be obtained if we simultaneously analyze the combined

data using a recursive Bayesian hierarchical method (RBHM). As we

will illustrate, the simultaneous analysis of the combined data permits

the unknown factor e�ects to be more precisely estimated. We propose

an RBHM for the integrated statistical analysis of expert opinion, phys-

ical, and computational experimental data that recognizes important

di�erences (such as biases) in these data.

Consider the following example. In an experiment to improve the re-

liability of a standard ball bearing design in a certain application, Hell-

strand (1989) designed and conducted an experiment to study the e�ect

of three categorical design parameters on ball bearing lifetime. Based

on past experience, the inner ring heat treatment (Factor A), the outer

ring osculation (the ratio of the ball diameter and the radius of the outer

ring raceway) (Factor B), and the cage design (Factor C) were thought

to have an e�ect on the performance and life of the bearing in this appli-

cation. The experiment employed a 23 design, given in Table 1.1, where

the two levels are standard (�) and modi�ed (+) values, respectively.

The response is the natural logarithm of the observed lifetime.

Table 1.1. Ball Bearing Physical Experimental Design Matrix and Lifetimes

Factor

Run A B C log(lifetime)

1 � � � 2.83

2 + � � 3.26

3 � + � 3.22

4 + + � 4.44

5 � � + 2.94

6 + � + 2.77

7 � + + 3.04

8 + + + 4.85

In addition, suppose there is a computational model for predicting

bearing lifetime that also contains the same three factors. However,

we assume that the e�ect of the modi�ed inner ring heat treatment

(Factor A, + level) has not yet been implemented in the computational

model. Table 1.2 contains the corresponding 22 design and associated

log(lifetimes) for the computer experiment.
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Table 1.2. Ball Bearing Computer Experimental Design Matrix and Lifetimes

Factor

Run A B C log(lifetime)

1 � � � 2.12

2 � + � 3.07

3 � � + 2.13

4 � + + 3.07

An expert in such bearing designs was also available and her opinions

regarding the e�ect of these three factors on lifetime were elicited. How-

ever, she was either unwilling or unable to express her opinion about

the expected lifetime for the fully modi�ed bearing design; thus, only

seven factor combinations were elicited. Table 1.3 gives her correspond-

ing log(expected lifetime), the subjective 0.90 quantile, log(q), on the

lifetime, and the equivalent worth, m, of each opinion relative to an

equivalent physical experimental result for the seven combinations that

were elicited. Further discussion regarding these three values is given in

Reese et al. (2001).

Table 1.3. Ball Bearing Expert Judgment Experimental Design Matrix and Lifetimes

Factor

Run A B C m log(expected lifetime) log(q)

1 � � � 0.5 2.51 2.58

2 + � � 0.75 2.83 3.05

3 � + � 0.5 2.76 3.29

4 + + � 0.5 4.17 4.38

5 � � + 0.5 2.37 2.43

6 + � + 1.0 2.59 2.66

7 � + + 0.75 2.67 3.02

We present the basics of the RBHM in Section 2, and we apply it to

the above example in Section 3. Finally, we present our conclusions in

Section 4.

2. The Basics of Data Integration Using RBHM

The design and analysis of computer experiments has evolved as the

power of computers has grown (although it has certainly not kept pace!).

Sacks et al. (1989) provide a review of techniques used in the analysis

of output from complex computer codes as well as issues for design.
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Latin hypercube sampling had its genesis in the design of computer

experiments (McKay, Beckman, and Conover 1979). Bayesian treatment

of design and analysis of computer experiments is presented in Currin

et al. (1991). These papers are primarily concerned with issues when

the only source of information is the output from a complex computer

model.

Data integration had its genesis in the meta analytic literature. Zeck-

hauser (1971) provides an early treatment of meta analysis. Hedges

and Olkin (1987) provide a nice review of meta analytic techniques.

However, meta analysis has not been viewed without strong criticism

(Shapiro 1994 and discussion). Muller et al. (1999) present a Bayesian

hierarchical modeling approach for combining case-control and prospec-

tive studies, where e�ects due to di�erent studies as well as di�erent

centers are allowed.

The statistical notion of pooling data (sometimes also known as \bor-

rowing strength") underlies the RBHM and analysis to be discussed.

Modern methods used to borrow strength have their basis in hierar-

chical Bayes modeling. A nice introduction to both hierarchical Bayes

modeling and borrowing strength is given by Draper et al. (1992). The

basic idea involves the notion that, when information concerning some

response of interest arises from several independent, but not identical,

data sources, a hierarchical model is often useful to describe relation-

ships involving the observed data and unobserved parameters of inter-

est. For example, unobserved parameters might be the coeÆcients and

error variance in an assumed regression model. Each source of data pro-

vides perhaps biased information about these parameters, in which case

methods that borrow strength will be useful. The practical advantages

of borrowing strength for estimating the unknown parameters will be

illustrated in Section 3.

We propose �tting lifetime models using information from three dis-

tinct sources: expert opinion, computational, and physical experiments.

The problem is diÆcult because the information sources are not nec-

essarily all available for the same set of design points. For example,

physical experiments may be performed according to a statistically de-

signed experiment, while computer runs may be made using a di�erent

design. In addition, expert opinions may only be available at a very

limited set of design points, such as the center of the statistical design

region. Our goal is to combine these sources of information using an

appropriately exible integration methodology that considers (and au-

tomatically adjusts) for the uncertainties and possible biases in each of

these three data sources.
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Reese et al. (2001) describe the RBHM that we will use here to com-

bine the three sets of lifetime data given in Section 1. The physical

experimental lifetimes, yp are assumed to follow a standard lognormal

linear regression model; namely,

log(yp) = N(Xp�; �
2
I); (1.1)

in which Xp is a known model (or design) matrix, � is a vector of un-

known coeÆcients that must be estimated, and the subscript p denotes

\physical experiment." We see that each physical lifetime is indepen-

dent of the others and has common variance �2, which must also be

estimated.

If physical experimental lifetimes were the only information source

considered, this model would typically be �t using either standard least-

squares regression methods (Draper and Smith 1981) or standard Bayesian

linear model methods (Gelman et al. 1995). However, we want to incor-

porate information both from experts and computer experimental data

to \improve" our estimates of � and �2.

Suppose also that there are e expert opinions, which do not have to be

from distinct experts. The ith expert opinion (i = 1; : : : ; e) is assumed

to be elicited at design point xi. Each expert opinion consists of the

following information:

the expected lifetime, yoi

a subjective coverage probability on the physical lifetime yoi,  i,

and the quantile associated with that probability, q i (i.e., P (yoi �

q i) =  i).

In addition, we consider the elicited \worth" of the opinion in units of

equivalent physical experimental data observations,m
(e)
oi
. In order to use

these data, we need to transform these individual pieces of information

into probability distributions that provide information about � and �2.

Assume for the moment that the three quantities above can be used to

create expert opinion \data" in accordance with the following model:

log(yo) = N(Xo� + Æo; �
2�o): (1.2)

As with the physical experimental lifetimes, the expert opinion data

yo are assumed to follow a lognormal distribution. However, the mean

is now Xo� + Æo, where Æo is a vector of possible expert-speci�c location

biases. The variances are also biased, and the matrix �o contains the

scale biases for each expert.

Besides location biases, in which an expert's average value is high or

low relative to the true mean, scale biases often occur due to information
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over-valuation and are well-documented in the elicitation literature. For

example, an expert may be asked to provide what they think is a 0.90

quantile but which in reality is actually only a 0.60 quantile (Meyer and

Booker 1991). Such over-valuation of information may be expressed in

the model as the scale bias parameter �o. Although responses from

experts can be correlated by having non-diagonal elements in �o, we

consider only the case of uncorrelated responses. Thus,

�0 =

2
6664

1=ko1 0 � � � 0

0 1=ko2 0 � � �

... 0
. . . � � �

0 � � � � � � 1=koe

3
7775 :

Reese et al. (2001) describe how the three expert-elicited quantities

above (for each expert opinion) can be described by the model given

in (1.2).

Now consider an analogous model for the computationally-produced

lifetime data; namely,

log(yc) = N(Xc� + Æc; �
2�c): (1.3)

In addition to possible location biases, computer experimental life-

time data are likely to have scale biases, as these data usually tend to

be less variable than physical lifetime data; in fact, there is often no

stochastic variability for given values of the factors, as a computer code

is often deterministic. The variability occurs relative to the assumed

model. Another reason for the reduced variability relative to physical

experimental lifetimes is that we know that not all factors generating

the physical lifetimes are incorporated into the computer code|perhaps

all of the factors causing variability are unknown. Although we con-

sider biases only in the intercept term of this model, more general bias

structures for the parameters can also be considered.

The RBHM provides a convenient way to sequentially integrate data.

We begin by assigning informative but di�use priors on all the unknown

model parameters including the biases. These priors are then updated

with the expert opinion data using Bayes theorem to form Stage 1 pos-

terior distributions. These Stage 1 posteriors are then likewise updated

using the computationally-produced lifetimes to form Stage 2 posteriors.

At Stage 2, these posteriors represent the combined use of only the ex-

pert opinion and computational data. Finally, these posteriors become

the priors for Stage 3 and these are again updated using the physical

experimental lifetimes to produce the �nal posterior distributions of in-

terest. In this way, all the available data are recursively used within the



8

model context to successively (and more precisely) estimate the desired

e�ects. Although these calculations cannot be done in closed form, they

can be accomplished using Markov Chain Monte Carlo (MCMC) simu-

lation. Reese et al. (2001) describes the details of these three steps and

also provides more general information on MCMC and the particular

Metropolis-Hastings algorithm used.

3. Ball Bearing Example

Hellstrand (1989) describes a 23 experiment to improve the reliability

of a standard ball bearing design. As stated in Section 1, the inner

ring heat treatment (Factor A), the outer ring osculation (Factor B),

and the cage design (Factor C) were thought to have an e�ect on the

performance and life of the bearing in this application. We analyzed the

data from Tables 1.1{1.3 to illustrate the RBHM framework described

in Section 2.

In particular, the X� terms in Equations 1.1{1.3 are parameterized

with a \grand mean" and linear treatment e�ects. The results are pre-

sented in Table 1.4. This table contains the maximum likelihood esti-

mates for the �s and �
2, �t with only the physical experimental data

(Table 1.1), in the ML column. The con�dence intervals for the ML

estimates are not presented as they are not directly comparable to the

RBHM estimates. In particular, expert judgment is used to develop an

informative prior for �2, as detailed in Reese et al. (2001). Table 1.4

also contains posterior means and 95% highest posterior density (HPD)

regions for the physical experimental data and the combined experimen-

tal data (Tables 1.1{1.3). Notice that the HPD regions for the multiple

data sources combined using the RBHM are smaller than for the physi-

cal experimental data alone. Figures 1.1 (a) and (b) illustrate the same
change in precision by displaying the prior distribution and posterior

distributions using physical experimental and combined data for �2 and

�4.

Figure 1.2 illustrates the prior and posterior distributions for Æc4, the

location bias for the fourth computer observation. Although there is very

little data to estimate this parameter, by \borrowing strength" through

the model, the posterior mean (-0.14) has shifted left.

Figures 1.3 (a) and (b) are median reliability functions for the stan-

dard settings and modi�ed settings, respectively, with corresponding

95% HPD regions. Notice for each plot that the probability bands are

smaller when more data are incorporated. Figure 1.4 plots the relia-

bility functions using the combined data for the standard and modi�ed

settings on the same scale. For example, the probability of the lifetime
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Table 1.4. Posterior Distributions for Physical and Combined Data

Physical Physical Combined Combined

Parameter Post. Mean 95% HPD Post. Mean 95% HPD ML

�0 3.40 (3.03,3.81) 3.36 (3.05,3.65) 3.42

�1 0.40 (0.035,0.78) 0.43 (0.15,0.74) 0.41

�2 0.46 (0.091,0.82) 0.50 (0.21, 0.77) 0.47

�3 -0.010 (-0.37,0.37) -0.027 (-0.31, 0.27) -0.017

�4 0.34 (-0.070,0.74) 0.31 (0.0042, 0.59) 0.35

�5 0.077 (-0.32,0.48) 0.062 (-0.20, 0.33) -0.0016

�6 -0.00078 (-0.40,0.35) 0.0087 (-0.27, 0.31) 0.076

�
2 0.30 (0.13,0.65) 0.22 (0.12, 0.41) 0.17

0.0 0.5 1.0 1.5

0
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2
3

4
5

6
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Physical Data Posterior
Combined Data Posterior

(a)
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(b)

Figure 1.1. Prior and Posterior Distributions for (a) �2 and (b) �4

exceeding 80 hours with the standard settings is 0.0065, with a 95%

HPD of (0,0.062); with the modi�ed settings is 0.68, with a 95% HPD

of (0.12,0.99).

4. Conclusions

We have presented an RBHM that can be used to combine expert

opinions, computationally-produced lifetimes, and physically observed

lifetimes in an experimental design setting. Available expert opinion

data are used to \sharpen" the initial informative, but di�use, prior
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Figure 1.4. Reliability Functions for the Combined Data

distributions on the unknown coeÆcients, biases, and prior parameters.

The example results clearly show that signi�cantly more precise esti-

mates of the factor e�ects and error variance can be obtained using this

method. In addition, the marginal posterior distributions of the com-

puter model biases can be used as diagnostic indicators for assessing the

validity of the computational model. That is, the more the location and

scale bias posteriors overlap 0 and 1, respectively, the more valid the

computational model.

Information from more than three sets of such data can likewise eas-

ily be combined by continued use of the RBHM, once for each data set.

Finally, biases that are not of particular interest can simply be marginal-

ized; that is, averaged out of the analysis using their respective prior dis-

tributions. Although we have considered categorical factors here, the use

of a linear regression model permits more complicated mixed integrated

models to be analyzed (see Reese et al. 2001).
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